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The method of discrete ordinates for the solution of the Boltzmann equation simplified by 
the BGK-model is extended to cylindrical coordinates. The curvature terms of the model 
equations are approximated by means of an ellipsoidal distribution function. The model 
equation is solved by means of finite-difference approximations. The rate of convergence of the 
iterative procedure employed is shown to be accelerated by introducing the deviation of the 
distribution function from a Maxwellian distribution into the model equation. To illustrate 
the applicability of the method, results are reported for the flow of an axisymmetric jet in a 
finite-pressure background gas of different species. 0 1985 Academic Press, IIK. 

INTRODUCTION 

Theoretical investigations of gaseous nonequilibrium flows commonly require the 
solution of the Boltzmann equation. One of the major difficulties in solving -the 
Boltzmann equation is due to the complicated structure of the collision integral, 
which contains the details of the moleculai interaction. Although significant advan- 
ces have been made in numerical solutions for the Boltzmann equation in recent 
years (e.g., Cl]), the solution of problems involving three-dimensional flow or 
two-dimensional flow of gas mixtures can, up to now, not be predicted in a 
reasonably short time with present available computers. For many a problem only 
certain macroscopic properties need to be determined. Consequently, instead of a 
detailed description of the molecular interaction by the collision integral, an 
approximate description is given by means of a simpler collision term (“collision 
model”), which retains only some qualitative and average properties of the collision 
integral. A most widely used collision model is given by the nonlinear Bhatnagar- 
Gross-Krook (BGK) model, which leaves two main properties of the collision 
integral unchanged: It involves the correct collisional invariants and expresses the 
tendency of the distribution function to a Maxwellian distribution in the limit 
t + co, according to the H-theorem [2]. 

The model equation resulting from the replacement of the collision integral by 
the kinetic model is often solved by means of the method of discrete ordinates [3]. 
This method is built on the assumption, that the moments of the distribution 
function given by integrals over the molecular velocity space can be calculated by a 
numerical quadrature. Hence values of the distribution function are required only 
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at certain discrete velocities (“discrete ordinates”). The solution of the model 
equation is then reduced to the solution of a system of partial differential equations, 
in which the molecular velocities appearing in the model equation are replaced by 
the discrete ordinates considered as fixed parameters. This system of differential 
equations can be solved by means of finite-difference approximations or by means 
of the method of characteristics. For the nonlinear BGK model equation the 
resulting equations have to be solved iteratively. This is done by taking all moments 
of the preceding iteration step. Convergence of the solution is assumed if the dif- 
ferences of the moments in two successive iteration steps are less than a prescribed 
error bound. 

The solution sketched above was successfully applied to the calculation of plane 
flows (e.g., [4, 51). By adapting the method to the calculation of flows, in which 
Coriolis and centrifugal accelerations are present, the analysis has been restricted to 
problems, which depend on the radial coordinate only [6-83. This restriction was 
necessary because of the prohibitively large computational effort, if the curvature 
terms were to be included. In this paper the restriction is circumnavigated and the 
method of solution is extended to axisymmetric flow problems by means of 
prescribing the distribution function in a way similar to [6, 71. 

The convergence of the iterative procedure is shown to be accelerated 
significantly by the use of a new form of the model equation, in which the deviation 
of the distribution function from a Maxwellian distribution is used as the dependent 
variable. Finally, for the problem of an axisymmetric jet issuing into a background 
gas of different species, some results of the calculation are presented to supplement 
the general considerations. 

MODEL EQUATIONS 

We consider the steady, two-dimensional, axisymmetric flow of a gas, assuming 
the distribution function f(r, z, v,, v ~, v,) to be governed by the BGK-model 
equation 

df af v;af vv af 
vz~+"'.~+Tao,- -=---==(I;-f), 

r av, 
where 

F= (2n;g3,’ ew {-Pz.g] 

is a local Maxwellian distribution containing combinations of the moments 

n= s ff 
m f d’v, 
-cc 

nU= s s s 

cc 
vf d’v, 

--co 

3nRT= 
ff I 

O” (v-U)2 f d’v. 
-co 

(2) 

(3) 
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The collision frequency v in Eq. (1) is usually expressed by one of the transport 
coefficients derived from the Boltzmann equation for a given intermolecular poten- 
tial by means of the Chapman-Enskog-method [3, 41. In Eqs. (lk(3), R denotes 
the gas constant, n the particle density, U the macroscopic flow velocity, and T the 
temperature. 

To reduce the number of independent variables, the following reduced dis- 
tribution functions are introduced: 

g(z, r, u,, 0,) = jm f dv,, h(z, r, vz, v,) = jm v;fdv,. 
--m -cc 

(4) 

The corresponding model equations for the reduced distribution functions are 
obtained from Eq. (1) by weighted integration with the weight function 1 and v:, 
respectively, 

ag ag V, 1 ah 
“z~+“r~+~g+;av, -=v(G-g), 

v,;+v,;+?h+;g=v(H-h), 
r 

(5) 

where 

GEL 
2xRT exp 

H= RTG, 

are the corresponding reduced Maxwellian distributions. Because of the appearance 
of the reduced distribution function 

k=jm V;fdqm -cc 

the coupled set of Eqs. (5) is not closed. The closure can be achieved by assuming 
(similar to [6]) that, for the centrifugal terms in Eqs. (5), the dependence of the 
distribution functionfon the velocity component v, can be approximated by 

a u-7 

f (3 
cc 

n 
exp{ -cw,$}. 

Thus, we obtain 

k=Z?&h, 

h=&g, 

(7) 
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where 

ez, r)=fjfW hdu,du,. (8) -cc 

Under the assumption (6) the model equations for the reduced distribution 
functions take the form 

(9) 

It should be noted that the relations (7) are not considered to be generally valid, 
but only as an approximation to the centrifugal terms. Sample calculations for the 
jet flow problem described further below indeed show, that the ratio h/g may still 
deviate from (2~) -’ (see Eqs. (7)) and slightly depend on the molecular velocity 
components. 

With regard to the application of the method of discrete ordinates, a further 
approximation to the centrifugal terms seems to be useful by prescribing the 
u,-dependence of the distribution function and carrying out the derivatives 
analytically. For the one-dimensional source flow in [6], the u,-dependence of the 
distribution function was modelled by an exponential of a quadratic form with 
three adjustable parameters, which have to be determined during the calculation by 
local fitting in the velocity space. Similar to that procedure, we assume, that the 
centrifugal terms in Eqs. (9) can be described approximately with a or-dependence 
of the 

where 

Thus, 

distribution function given by 

f c-1 
2 

112 

71 exp{ -P(u,- ur12>, 

the single parameter /I can be determined by the equation 

p-‘(z, r)=Z 
n ff 

O” (u, - Ur)2 g du, du,. 
--oo 

(10) 

(11) 

we finally obtain the model equations for the reduced distribution functions, 

ag uzdz+D$+;g=v(G-g), 

ah ah 3K 
(12) 

uz,z+ur~+ Th=v(H-h), 
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where the coefficient of the curvature terms is given by 

K(z, I, u,)= 1-$ u,+; u,. 
( ) 

B 
(13) 

It should be noted, that the assumptions (6) and (10) do not restrict the solution 
to ellipsoidal distribution functions, since they represent an approximation to the 
curvature terms only. In sample calculations it could be verified, that the solution of 
the model equations (12) for the jet flow problem may deviate from the assumed 
u,-dependence. Hence we conclude that the assumptions (6) and (10) lead to a suf- 
ficiently accurate representation of the curvature terms, if the flow field does not 
involve strong shock waves normal or inclined to the radial direction with a 
marked bimodal or-dependence of the distribution function. 

An additional remark should be made about the influence of the approximations 
on the conservation of energy and angular momentum between molecular 
collisions, which follows from the characteristics of Eq. (1). (We are grateful to the 
reviewers for pointing out this question.) Equations (12) may be considered to be 
derived from a modified model equation, the centrifugal term of which has been 
approximated by means of relation (10). This modified model equation leads to 
characteristics that no longer coincide with molecular paths in case of free- 
molecular flow. Therefore, we cannot draw any conclusions about the molecular 
paths from the modified model equation only. The conservation of energy and 
angular momentum is, however, not affected by the approximations, if the solution 
of the modified model equation also satisfies Eq. ( 1). This we consider to be true, if 
the distribution function does not deviate too strongly from the ellipsoidal u,- and 
v,-dependence. 

COMPUTATIONAL PROCEDURE 

Applying the method of discrete ordinates we substitute the integrals in Eqs. (3), 
(8), and (11) by the following quadratures: 

n= c kk,g,,, 
K = l,...,m 
0 = l,...,n 

n(U,, ur)- 1 kk,(uKp u,) gKcT 
K = l,...,m 
0 = l,...,n 

na -l=2 1 k,k,h,,, 
K = l,...,m 
l7 = l,...,n 

nb- ’ = 2 c W,(u, - u,)’ g,,, 
K = l,...,m 
(I = l,...,n 

3nRT- c k,k,( 
K = l,...,m 

u.-U~)2g~~+~(a-1+B~1). 

(I = l,...,n 

(14) 
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where k, and k, are the weighting coefficients of the quadrature for the velocity 
components v, and II,, and g,, and h,, denote the spatial dependent functions 
g(r, z, v,, v,) and h(r, z, II,, a,), respectively. Since values of the reduced distribution 
functions are required only at discrete points in the velocity space, we replace the 
molecular velocities in the model equations (12) by the discrete velocities (v,, v,), 
so that the solution of the model equations is reduced to the solution of the follow- 
ing set of 2m x it differential equations in physical space, 

v”~+v”ar+rg~~=v(G”~-g”“), 

+~,w=W,,-h,,) 

(15) 
(Ic = l,..., m; 0 = l,..., n), 

where 

Equations (15) are solved by employing finite-difference approximations in 
physical space. To reduce the computer time, forward and backward difference 
schemes have been used 

&a7 
3FS 

g”:,(z, r) - g$(z -SAG r) 
AZ 3 

k-, N t g”:,(z, r) - g”:,(z, r - tAr) 
ar- Ar 9 

where 

s”:, = gwQ(svtJ @(tv,)v 
s = sign(v,), 

t = sign(v,) 

and 

8(x) = 1, x 2 0, 

0, x<o 

(16) 

is the step function. 
Taking equivalent expressions for h, we obtain the finite-difference approximation 

of Eqs. (15), 
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=vG;~+~g:(,(z--sAz,r)+!f$!g;~(z,r--lAr), 

[ 
F+%+++v 1 h”:,(z, r) 

(17) 

The (l/r)-dependence of the curvature terms in Eqs. (17) requires a separate treat- 
ment of Eqs. (15) for the functions g* - and h * - on the symmetry axis, from 
which the functions g * + and h * + can be determined by the symmetry conditions, 

r=O: g’+=g+-, 

h’+=h’-. 

By means of the relations 

r = 0: 
ag*+ +ag*- o 

ar T=’ 

ah’+ ahi- 
dr + - = 0, 

ar 

which imply that an/& = aT/ar = 0 on the axis, and 1’Hospital’s rule, the following 
finite-difference approximations to Eqs. (15) are deduced in the limit r + 0, 

=vF*-+zgf-(z-sAz O)+$$g*-(z,Ar) IL-g 3 Kc7 3 

3 Up(z, At-) - v, 
Ar ,+v 1 h,&-(z) 0) 

=vH~~+!$h$(z-sAz,O)+~h,,$-(z, Ar). 

The set of nonlinear finite-difference equations (17) and (18) have to be solved 
iteratively. The commonly used iterative procedure is defined by the following 
replacement in Eqs. (17) and (18) for the kth iteration step, 

g, h --, gcK), hcK), 

v > u I9 G, H-, vcK- l), U;K- I), G-l), H-1). 
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Thus, in the iterative procedure, the resulting equations are linearized. (In the 
following, the iteration index will be omitted.) The iterative procedure is assumed 
to converge if the differences of the moments of two successive iteration steps fall 
short of a given bound. 

STABILITY ANALYSIS 

According to the Lax equivalence theorem [9], the finite-difference 
approximations (in the linearized form) are checked with regard to consistency and 
stability to assure that the solution of Eqs. (17) converges to the solution of the dif- 
ferential equations (15). Consistency may easily be verified by reducing Eqs. (17) to 
Eqs. (15) in the limit Ar + 0, AZ -+ 0. To ensure stability, the distribution functions 
were expanded into a Fourier series and conditions were imposed, according to 
which the Fourier coefficients remain bounded. With 

the stability conditions may be written in the form 

Inserting the Fourier expansion into Eqs. (17) we get 

+29 z+-!$+v+h$ 
( ) 

(l-cos(rrr)), (19) 

where E = 1 gives the stability condition for g, E = 3 the corresponding condition for 
h. Since the collision frequency v is always greater or equal to zero, the conditions 
(19) show, that the stepwidths Ar and AZ are restricted in axisymmetric geometry, 
since the curvature terms may take on negative values. (The corresponding stability 
conditions for plane flow are obtained from the conditions (19) by putting E = 0 and 
regarding Ar and AZ as stepwidths in Cartesian coordinates; therefore, the choice of 
the stepwidths is not restricted in plane geometry.) 

It should be noted that the source term instability occurring in cylindrical coor- 
dinates does not arise from a discrepancy between the physical and the numerical 
region of influence. As mentioned earlier, the approximations to the curvature 
terms, which lead to Eqs. (12), correspond to the solution of a modified model 
equation instead of Eq. (1). The characteristics of Eq. (1) are projected onto the 
(r, z) plane as hyperbolic curves, those of the modified model equation, however, as 
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straight lines. For the modified model equation, at any gridline r = const. the region 
of influence is therefore defined by the sign of u, only and independent of u,. Hence 
it follows that the values of the reduced distribution functions at the gridline r are 
influenced by the corresponding values at r + Ar. 

From the stability conditions (19) we obtain the strongest restriction on the 
choice of the stepwidths in the case of free-molecular flow, 

(20) 

From conditions (20) it follows that the stepwidths can be determined only if the 
coefficients K, are known. Therefore, the stepwidths chosen at the beginning of the 
calculation must eventually be corrected in the course of the iterative procedure. In 
general, we started the procedure with the curvature terms set equal to zero. After a 
few iterations, the maximal value of K, was estimated, and the stepwidths were 
corrected according to the conditions (20). The procedure was then continued with 
the complete curvature terms. 

Since in our sample calculations, the coefficients K, strongly decrease with 
increasing r, the number of radial gridlines could be reduced by the use of local 
estimates for the coefficients K,. For all results discussed further below a stable grid 
was found by means of the following simple relations: 

rn = rn - ,/sin x,, L+, =xn-AX (n = l,..., N), 

where r. = 0.0760, x, = 85” and Ax = 2”. 

RATE OF CONVERGENCE 

In the iterative procedure described above the alteration of the distribution 
functions in the course of the procedure is driven by the moments of the preceding 
iteration step, i.e., only local macroscopic quantities appear as an iterative driving 
function. Thus, the iteration procedure does not properly describe the tendency to 
global equilibrium driven by spatial variations of the moments, but rather main- 
tains some properties of the generally arbitrary initial guess of the moments over a 
large number of iterative steps. For this reason, the iteration procedure was 
changed to ensure a better rate of convergence by using the derivatives of the 
macroscopic quantities as the iterative driving functions. This can be done easily in 
the following way. It is not intended to give rigid proof here, but rather to show by 
means of a simple example, how the solution converges in the course of the 
iterations. 

We consider a steady, one-dimensional flow assuming all external forces to 
vanish and the distribution function to be governed by the model equation 

v, g= v(F-f). (21) 
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Equation (21) is rewritten as 

(22) 

where K denotes the iteration step and K indicates one of the discrete ordinates. 
With the abbreviation c(x, II,) = v(x)/o,, the solution of Eq. (22) is given by 

The subscript K and the iteration index K are omitted for the sake of simplicity. The 
valuef(x,) is assumed to be previously determined or given as a boundary value. 
Defining a mean value by 

(24) 

we put Eq. (23) in the form 

ftx) = ftxo) e - l:,y’x + j$l _ e - @“‘). (25) 

Equation (25) shows, that during the iteration the distribution function is given by 
a mean value of the Maxwellian distribution of the preceding iteration step. A dif- 
ference approximation of Eq. (25) is obtained by considering x and x0 as two 
neighbouring grid points, 

x0 = x - Ax sign(v,), (26) 

Ax= Ix-x01, (27) 

where sign(u,) takes into account the region of influence according to the direction 
of the molecular flow. Defining another mean value by 

we obtain 

_ 1 --c 
c=dx X0 s c dx’, (28) 

f(x) elr’ldx =f(x,) + &lClbX - 1). 

The expansion of the exponential function up to the order O(dx) yields 

S(x)(l + [El dx) =f(x,) + FlCl Ax. 

The first-order finite-difference approximation of Eq. (22) is given by 

(29) 

(30) 

sign(” 
K 

f-(x) -f(xo) 

Ax + c(x) f(x) = 4x1 F(x) 



KINETIC MODEL SOLUTION 295 

or 

f(x)(l + ICI Ax) =f(x,) + F/cl Ax. (31) 

The comparison of Eqs. (30) and (31) shows, that in the first-order linite-dif- 
ference approximation of Eq. (22), the mean values appearing in Eq. (30) are 
replaced by the local values at the point x. For the case of equilibrium flow, f = F, 
or, from Eq. (21), aF/;/ax=O implies, that the moments and, consequently, the 
collision frequency have no spatial dependence [2], so that the mean values coin- 
cide with the local values. Generally, an arbitrary guess of the moments is made at 
the beginning of the iterative procedure, so that even for the equilibrium solution 
the condition aF/ax=O is not satisfied during iterations. In Eq. (30) the spatial 
dependence of the moments is smoothed by the mean values and, therefore, the ten- 
dency to the equilibrium state is involved in the iteration. With the use of Eq. (31) 
the influence of the initial guess decreases only gradually, causing the rather low 
rate of convergence of the iterative procedure. 

To avoid the somewhat cumbersome numerical treatment of mean values, we put 
the iterative procedure into another form, in which the gradients of Maxwellian dis- 
tributions are considered as a physical “driving force” to the equilibrium state. By 
means of partial integration, Eq. (23) can be put into the form 

where 

Af=f-F 

denotes the deviation of the distribution function from the local Maxwellian dis- 
tribution. Equation (32) is seen to be the solution of 

gf+cAf= -$ 

Carrying out the same derivation as above we obtain 

Af(x)e”‘d”=Af(x,)-~~(el’~d’- 1). 

The first-order approximation to Eq. (34) is given by 

Af(x)(l + ICI Ax)=Af(x,)+ Ax. 

(33) 

(34) 

(35) 



296 DIETHARD BERGERS 

Comparison of Eq. (35) with the first-order finite-difference approximation of 
Eq. (33) 

@(x)(1 + ICI Ax) = Q-(x,) -gsign(v,) Ax, (36) 

F(x) -F(%) g= sign(v,) dx (37) 

again shows, that the mean values are replaced by local values in Eq. (36), but now 
the gradient of the Maxwellian distribution function appears as the “driving force” 
in the iteration. In the following we show, that the application of the iterative 
procedure to the difference Af instead of the distribution function f leads to a 
greater rate of convergence. Consider the more general solutions, Eqs. (29) and 
(34), respectively, with the mean replaced by local values. This is permissible, since 
Eqs. (3 1) and (36), respectively, may be considered as having been derived from the 
former. We restrict our considerations to the equilibrium solution of Eq. (21) and 
assume that in the preceding iteration step the Maxwellian distribution has taken 
on the constant equilibrium value Fs at all grid points except x. Omitting the bars 
in Eq. (29) (resp. Eq. (34)) and taking into account, that under the assumption 
made above, j-(x0) = F(x,) = F,, we obtain from Eq. (29), 

If(x)-F,I = I(l;(x)-F.sNl -ep--)l (38) 

and from Eq. (34) respectively, 

where z = ICI Ax and the subscript A on the left-hand side of Eq. (39) indicates the 
application of the iterative procedure to Af: Thus, we have to show, that 

If(x) - FAA d If(x) - r;;l 

or, since 0 < 1 -e ~’ Q z, and, consequently, the second factors on the right-hand 
sides of Eqs. (38) and (39) are positive semi-definite, 

l-l-eK= 
< 1 -ePZ. (40) 

Z 

Condition (40) is easily seen to be satisfied for all values of z. 
The better rate of convergence of the iterative procedure, if applied to the dif- 

ference of the distribution function Af, was also proved in numerical experiments, in 
which the decay of a perturbation with amplitudes up to 100% of the solution 
value was observed. For the model equation (1 ), convergence was reached after 4 
instead of 15 iteration steps on average, if the iteration procedure was applied to 
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the difference Af instead of the distribution function itself. For the sample 
calculations described in the following, the number of required iteration steps could 
be reduced up to 25%. 

APPLICATION OF THE METHOD OF !SOLUTION 

To illustrate the application of the method of solution, some results are reported 
here for axisymmetric jet flow in a finite-pressure background gas of different 
species [lo]. The distribution functions fi of jet and background gas are assumed to 
be governed by the extended model equations for binary gas mixtures [ll, 121, 

as ax, V; afi V,U~ afi vz~+vr~+Tav,- --= vij(Fi-fi) + V,(Fij-fi), r au, (41) 

where vii and vii, respectively, are the self- and cross-collision frequencies, Fj are the 
Maxwellian distributions of species i and Fij Maxwellian distributions containing 
parameters nii, U,, and T,, which, following the line given in [12], can be deter- 
mined by comparing the conservation and relaxation equations of the model and 
the Boltzmann equations for binary gas mixtures. Similar to the case of a 
homogeneous gas, the collision frequencies may be expressed by a corresponding 
number of transport coefficients derived from the Boltzmann equations for a given 
intermolecular potential. For that purpose, we have chosen the diffusion coef- 
ficients, and, for the sake of simplicity, the hard-sphere model was applied. Thus, 
we obtain 

8(2z)“’ 
v..=-ni(2R,T,)“2df, II 

v..=&nj((l +t) RiTM)‘.’ (y): 8Pn) 
B 

T,+,=Ti+&.(Tj-Ti)+ 
n,njmj(Uj - Ui)2 

1 I 3R,(n, + u,)(n,m, + njmj)’ 

u,=ui+~(uj-uj), 
I J 

Tg=Ti+(myi:j)2 
(uj-ui)* 1 RR, ’ 

(42) 

where mi and mj are the molecular masses and di and dj the molecular diameters. 
For the formulation of the boundary conditions we consider the half-space z>O 

and assume, that the nozzle exit lies in the plane z = 0. Because of the hyperbolic 
type of Eqs. (41) in physical space, values of the distribution functions must be 
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prescribed at the entire boundary for molecules, the velocity vectors of which are 
directed into the integration domain. At infinity, we assume that the pressure is due 
to the background component only, which is supposed to be in the equilibrium 
state of a quiescent gas with given density n,,, and temperature T,, 

z+oo, O<r<co: f,’ =F;*(H~,~,U~=O, T,;v), 

j-l’=O, 

O<Z<cO, j-2 - = F$ - (Q,~, UB = 0, T, ; v), 
(43) 

r-+co: 

j-J’- =o, 

where the signs are chosen as in Eqs. (16) and the subscripts J and B denote the jet 
and background component. At the wall, diffuse reflexion is assumed for a given 
temperature T,, 

z=O, D/2<r<co: f,’ * = F; + (qw, Ui = 0, T,,. v). (4) 

The wall densities ni,,,, are not known a priori and must be determined by means of 
a further condition. For an impermeable wall, the particle fluxes normal to the wall 
vanish. Inserting Eqs. (44) into this condition, we get 

For the nozzle exit, we assume that all background molecules with negative 
u,-components are back-scattered in the inside of the nozzle by collisions with jet 
molecules, and that they have adapted the mean velocity UD and the temperature 
T, of the jet component when re-entering the domain of integration: 

z = 0, 0 <r < D/2: f+ + = Fi” ‘(n,,, Uu, T,; v). (46) 

The number densities n,, were determined from the condition of constant particle 
flux. Similar to Eqs. (45) this yields, 

where the function Si are given by 

and Qi,o are the values of the chosen particle fluxes (erfc is the complementary 
error function). Finally, along the symmetry axis, we have 

O<z<co, r=O: fi' +(u,)=fi+-(-uV,). (48) 
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Introducing the transformation 

5 = 1 -exp{ -a,z/D}, q= 1 -exp{ -a,r/D}, (49) 

which ensures a correct representation of the boundary conditions at infinity, we 
obtain the approximated model equations for the reduced distribution functions, 

=Aiivii(Gi-gi)+ A,‘vo(G,-gi), (50) 

= A,v,,(H, - hi) + A,v,(H, - hi). 

In Eqs. (50) all variables were made dimensionless with the nozzle diameter D, 
the densities n,,, and nB,oo for the jet and the background component, respectively, 
the velocity (2B, T,)l12 and the temperature T, as reference quantities. The dimen- 
sionless quantities Aii and A, may be expressed by the Knudsen numbers 

Kn,,, = (21’2n Gn,,, D))‘, KnB,, = (21127r d2gnB,m D))‘, 

and the ratios of molecular masses h4 = MB/m, and diameters d = dB/dJ as 

(51) 

Introducing the new dependent variables dg, and dh,, the corresponding model 
equations are obtained from Eqs. (50) by substracting equivalent terms for the 
Maxwellians Gi and Hi. The boundary conditions, Eqs. (43)-(46), can be written in 
the simple form dgi = 0 and dhi = 0, respectively; the symmetry condition Eq. (48) 
is reduced to df+ + (u,) = df+ ~ ( - 0,). 

The model equations where discretized in the (5, q)-plane with constant 
stepwidths in the 5 direction and increasing stepwidths in the q direction; this 
choice was discussed in the stability analysis. According to Eqs. (16), in the com- 
putational procedure each quadrant of the velocity space requires a separate treat- 
ment. Since, for the boundary conditions at 5 = 0 and q =O, the distribution 
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functions for the incoming molecules must be known, the sequence of the quadrants 
within the calculation is fixed. In each iteration step, the calculation starts at the 
point (1 - A&j, 1 - Aq) for a chosen pair of discrete ordinates u, < 0, u, < 0 (Fig. 1). 
For this pair of discrete ordinates, the values of the distribution functions are then 
determined along the gridline 1 - A[ until the axis q = 0 is reached. Applying the 
symmetry condition, the values of the distribution functions for the pair (u,, -u,) 
can be calculated marching along the same gridline. This procedure is repeated for 
all gridlines 5 = const. and for all discrete ordinates with v, < 0. After arriving at the 
line 5 = 0, the wall and nozzle densities may be determined from the boundary con- 
ditions. Then, for v, > 0 an analogous procedure is carried out until 5: = 1 - 44 is 
reached again. Thus, for all quadrants of the velocity space the distribution 
functions are determined and the moments may be calculated by means of a proper 
quadrature formula (Eqs. (14)). The iterative procedure was stopped when the dif- 
ferences of all moments in two successive iteration steps was less than 10P3. 

In the following some of the results calculated by means of the described method 
are reported. As a proper quadrature formula, the modified Gauss-Hermite half- 
range quadrature [ 131 with 8 x 8 discrete ordinates per quadrant of velocity space 
has been used. The (5, q) plane was covered by 26 x 31 grid points. In all cases the 
wall temperature was chosen to be T, = T, . To illustrate the influence of the cen- 
trifugal and the Coriolis force on the particle densities, Figs. 2 and 3 show the lines 
of constant density in plane and axisymmetric geometry for a sonic jet with 
Kn ,,b = 2.6 x 10 -* and a background gas of equal species with KnB,oo = 
1.54 x 10 ~ ‘, respectively. 

Both in plane and in axisymmetric geometry, Fig. 2 suggests that three flow 
regions can be distinguished with respect to the density of the jet near the symmetry 
plane or axis, respectively. Due to the very low number of background molecules 
near the nozzle exit (Fig. 3), there is a free expansion of the jet component, which is 
stopped at approximately two nozzle diameters by the onset of the jet-background 
interaction. This leads to a slight increase of the jet density farther downstream, 
which is steeper in plane geometry because of the steeper increase of the 
background density. This increase of the jet density corresponds to the onset of a 
normal shock, which in axisymmetric flow is known as Mach disk. After about four 

I- 
I-7 
L-l -v. 

FIG. 1. Arrangemet of the difference schemes in the computational grid. 
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FIG. 2. Density distribution of the jet component in (a) plane and (b) axisymmetric flow. 
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FIG. 3. Density distribution of the background component in (a) plane and (b) axisymmetric flow. 

FIG. 4. Axial density distribution for different background species; Kn,,, = 2.60 x 10 --2, Kn,, = 
1.54x 10-I; ( -), M= 1, A = 1; (---), M= 1.4266, A =0.9707; (-.-), M =0.5725, A = 1.1040. 
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nozzle diameters, where the jet-background interaction is dominant, the jet density 
falls off again because of the increasing number of back-scattered jet molecules. 

In Fig. 4 both jet and background density are plotted against the distance from 
the nozzle exit along the symmetry axis for different background species. For the 
case of a two-component background mixture, the different penetration behaviour 
of background components with different molecular masses, which is clearly seen in 
Fig. 4, leads to an enrichment of the light background component in the inner part 
of the jet structure (“jet membrane”, e.g., [14]). 

The sample calculations showed, that the additional computational effort, being 
due to the curvature terms, can be kept within reasonable bounds, if the u,- and 
u,-dependence of the distribution function are prescribed approximately by ellip- 
soidal-type distribution functions in the curvature terms with the derivatives 
evaluated analytically. This approximation proved to be sufficiently accurate in the 
absence of strong shock waves normal or inclined to the radial direction. Further- 
more, the sample calculations showed, that the improvement of the rate of con- 
vergence by using the deviation of the distribution function from the Maxwellian 
distribution, which was considered only for the equilibrium case, proved to be valid 
also for nonequilibrium flows. 
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